if a²=b+c,b²=c+a and c²=a+b,then the value of (1/1+a)+(1/1+b)+(1/1+c) is
Answers
Answered by
36
a² = b + c
b² = c + a
c² = a + b
a² - b² = b - a => (a - b) (a + b) = b - a
=> a + b = -1 or a = b
1) a + b ≠ - 1 as c² is not negative, if c is a real number.
a = b => c² = 2 a
similarly, b = c => a² = 2 b (as b+c ≠ -1, as a² is non negative)
and c = a => b² = 2 a
so we get a = b = c = 2
b² = c + a
c² = a + b
a² - b² = b - a => (a - b) (a + b) = b - a
=> a + b = -1 or a = b
1) a + b ≠ - 1 as c² is not negative, if c is a real number.
a = b => c² = 2 a
similarly, b = c => a² = 2 b (as b+c ≠ -1, as a² is non negative)
and c = a => b² = 2 a
so we get a = b = c = 2
kvnmurty:
click on thanks button above please
Answered by
15
(1/1+a)+(1/1+b) +(1/1+c) take LCm 1/1+a+1/1+b+1/+1/1+c = {(b+1)(c+1)+(c+1)(a+1)+(a+1)(b+1)}/(a+1)(b+1)(c+1)
solve the equation
{bc+b+c+1+ac+c+a+1+ab+a+b+1}/(ab+b+a+1)(c+1)
(a+a+b+b+c+c+ab+bc+ca) /(ab+b+1+a)(c+1)
we know that
a²=b+c , b²=c+a , c²=a+b
{(b+c)+(b+c) + (a+a)}/(ab+1+(b+c))(c+1)
{a²+a²+2a }/{abc+c+c(b+c)+ab+1+(b+c)}
2a(a+1)/abc+c+c(a²)+ab+1+(a²)
2a(a+1)/abc+c+a²c+ab+1+a²
2a(a+1)/abc+ c(a²+1) +a(b+a)+1
2a(a+1)/abc+c²(a+1)+ac²
2a(a+1)/abc+ac²+c²+ac²
2a(a+1)/abc+c²(a+1+a)
2a(a+1)/abc+c²(2a+1)
2a(a+1)/c(ab+c(2a+1)
2a(a+1)/c(ab+2ac+c)
2a(a+1)/c(ab+ac+ac+c)
2a(a+1)/c(a(b+c)+c(a+1)
2a(a+1)/c(a(a²)+c(a+1)
2a(a+1)/c(a³+ac+c) by solving this we get
2a(a+1)/2a(a+1) = 1
solve the equation
{bc+b+c+1+ac+c+a+1+ab+a+b+1}/(ab+b+a+1)(c+1)
(a+a+b+b+c+c+ab+bc+ca) /(ab+b+1+a)(c+1)
we know that
a²=b+c , b²=c+a , c²=a+b
{(b+c)+(b+c) + (a+a)}/(ab+1+(b+c))(c+1)
{a²+a²+2a }/{abc+c+c(b+c)+ab+1+(b+c)}
2a(a+1)/abc+c+c(a²)+ab+1+(a²)
2a(a+1)/abc+c+a²c+ab+1+a²
2a(a+1)/abc+ c(a²+1) +a(b+a)+1
2a(a+1)/abc+c²(a+1)+ac²
2a(a+1)/abc+ac²+c²+ac²
2a(a+1)/abc+c²(a+1+a)
2a(a+1)/abc+c²(2a+1)
2a(a+1)/c(ab+c(2a+1)
2a(a+1)/c(ab+2ac+c)
2a(a+1)/c(ab+ac+ac+c)
2a(a+1)/c(a(b+c)+c(a+1)
2a(a+1)/c(a(a²)+c(a+1)
2a(a+1)/c(a³+ac+c) by solving this we get
2a(a+1)/2a(a+1) = 1
Similar questions