If a²(b + c)
, b²(c + a), c²(a + b) are in A.P., show that either a, b, c are in A.P. or ab+be+ca=0.
Answers
Answered by
1
Answer:
x,y,z are in A.P. , xy=z−y
a
2
(b+c)−a
2
(b+c)=c
2
(a+b)−b
2
(c+a)
a
2
b+a
2
c−a
2
b−a
2
c=c
2
a+c
2
b−b
2
c−b
2
a
(a
2
b−a
2
c)+(b
2
a−a
2
b)=(c
2
a−b
2
a)+(c
2
b−b
2
c)
c(b
2
−a
2
)+ab(b−a)=a(c
2
−b
2
)+bc(c−b)
(b−a)[c(b+a)+ab]=(c−b)[a(c+b)+bc]
(b−a)(bc+ac+ab)=(c−b)(ac+bc+ab)
Either ab+bc+ac=0,
b−a=c−b
Similar questions