Math, asked by trishatuktuk9, 1 month ago

if a²+b²=13 and ab=6, find : 1. a+b 2. a-b​

Answers

Answered by aparna4658
3

Answer:

3(a+b)

2

−2(a−b)

2

We know,

(a+b)

2

=a

2

+b

2

+2ab

=13+2(6)

=13+12

=25

=>(a+b)=±

25

=>(a+b)=±5

Again,

(a−b)

2

=a

2

+b

2

−2ab

=13−2(6)

=13−12

=1

=>(a−b)=±1

Putting the values, we get,

3(±5)

2

−2(±1)

2

=75−2

=73

Answered by CopyThat
23

Step-by-step explanation:

Given:

a² + b² = 13

ab = 6

To find:

1. a + b

2. a - b

Solution:

We know,

  • (a + b)² = a² + b² + 2ab

⇒ (a + b)² = 13 + 2(6)

⇒ (a + b)² = 13 + 12

⇒ (a + b)² = 25

Square root on both sides.

  • √(a + b)² = √25

∴ (a + b) = ±5

We know,

  • (a - b)² = a² + b² - 2ab

⇒ (a - b)² = 13 - 2(6)

⇒ (a - b)² = 13 - 12

⇒ (a - b)² = 1

Square root on both sides.

  • √(a - b)² = √1

∴ (a - b) = ±1

Similar questions