if a2+b2=169,ab=60, (a>b) then(a2-b2)
Answers
Answered by
4
Answer:
given that,
a²+b²=169
ab=60
now,
(a+b)²=a²+b²+2ab
(a+b)²=169+2×60
(a+b)²=169+120
(a+b)²=289
rooting both sides
a+b=√289
a+b=17
and,
(a-b)²=a²+b²-2ab
(a-b)²=169-2×60
(a-b)²=169-120
(a-b)²=49
rooting both sides
a-b=√49
a-b=7
now
a²-b²=(a+b)(a-b)
=(17)×(7)
=119
Answered by
3
(a+b)² = a²+2ab+b²
But a²+b² = 169 and ab = 60
Therefore (a+b)² = 289
(a+b) = ±17
a+b = 17 or a+b = -17
Similarly (a-b)² = a²+b²-2ab
(a-b)² = 49
(a-b) = ±7
a-b = 7 or a-b = -7
a-b = 7 is only possible as a>b
(a+b)(a-b) = a²-b²
Case - I
when a+b = 17
(a+b)(a-b) = a²-b²
17*7 = 119
i.e., a²-b² = 119
Case - II
when a+b = -17
(a+b)(a-b) = a²-b²
-17*7 = -119
i.e., a²-b² = -119
So a²-b² = ±119
HOPE IT HELPS !!
Similar questions