If a2 +b2 =177and ab=54 then find the value of a+b/a-b?
Answers
Answered by
10
Solution:
Given that ;
- a² + b² = 177
- ab = 54
Consider a² + b² = 177
On adding 2ab both sides -
⇒ a² + b² + 2ab = 177 + 2ab
⇒ (a + b)² = 177 + 2 * 54 [ab = 54]
⇒ (a + b)² = 177 + 108
⇒ (a + b)² = 285
⇒ a + b = √285
Again consider - a² + b² = 177, on subtracting 2ab both sides.
⇒ a² + b² - 2ab = 177 - 2ab
⇒ (a - b)² = 177 - 2 * 54
⇒ (a - b)² = 177 - 108
⇒ (a - b)² = 69
⇒ a - b = √69
Now,
Answered by
7
Answer : √285/√69
Step by step explanation :
We have,
a² + b² = 177; ab = 54
Now, (a+b)² = a² + b² + 2ab
=> (a + b)² = 177 + 2 × 54
=> (a + b)² = 177 + 108
=> (a + b)² = 285
=> a + b = √285
Now, (a - b)² = a² + b² - 2ab
=> (a - b)² = 1+7- 2 × 54
=> (a - b)² = 177 − 108
=> (a - b)² = 69
=> a - b = √69
Now, a + b = √285 and a - b = √69
Thus,
a + b / a - b = √285 / √69
Hence, Answer : √285/√69
Similar questions