Math, asked by Mohammad2724, 1 year ago

If a2 +b2 =177and ab=54 then find the value of a+b/a-b?

Answers

Answered by LovelyG
10

Solution:

Given that ;

  • a² + b² = 177
  • ab = 54

Consider a² + b² = 177

On adding 2ab both sides -

⇒ a² + b² + 2ab = 177 + 2ab

⇒ (a + b)² = 177 + 2 * 54 [ab = 54]

⇒ (a + b)² = 177 + 108

⇒ (a + b)² = 285

⇒ a + b = √285

Again consider - a² + b² = 177, on subtracting 2ab both sides.

⇒ a² + b² - 2ab = 177 - 2ab

⇒ (a - b)² = 177 - 2 * 54

⇒ (a - b)² = 177 - 108

⇒ (a - b)² = 69

⇒ a - b = √69

Now,

 \implies \sf  \frac{a + b}{a - b }  \\  \\ \implies \sf  \frac{ \sqrt{285} }{ \sqrt{69} }

Answered by BrainlyVirat
7

Answer : 285/69

Step by step explanation :

We have,

a² + b² = 177; ab = 54

Now, (a+b)² = a² + b² + 2ab

=> (a + b)² = 177 + 2 × 54

=> (a + b)² = 177 + 108

=> (a + b)² = 285

=> a + b = 285

Now, (a - b)² = a² + b² - 2ab

=> (a - b)² = 1+7- 2 × 54

=> (a - b)² = 177 − 108

=> (a - b)² = 69

=> a - b = 69

Now, a + b = 285 and a - b = 69

Thus,

a + b / a - b = √285 / √69

Hence, Answer : 285/69

Similar questions