Math, asked by boom85, 9 months ago

If a² + b² = 23ab show that,
log { ⅕ (a+b) } = ½ (log a + log b).​

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ a² + b² = 23ab [Given].

To prove.

⇒ ㏒(a + b)/5 = 1/2(㏒a + ㏒b).

Method = 1.

⇒ ㏒(a + b)/5 = 1/2(㏒a + ㏒b).

As we know that,

We can write equation as,

⇒ 2㏒(a + b)/5 = ㏒(a) + ㏒(b).

As we know that,

Formula of :

⇒ ㏒ₐMN = ㏒ₐM + ㏒ₐN.

⇒ ㏒ₐN^(α) = α㏒ₐN (α any real number).

Using this formula in the equation, we get.

⇒ 2㏒(a + b)/5 = ㏒(ab).

⇒ [(a + b)/5]² = ab.

⇒ (a² + b² + 2ab)/25 = ab.

⇒ a² + b² + 2ab = 25ab.

⇒ a² + b² = 25ab - 2ab.

⇒ a² + b² = 23ab.

Hence proved.

Method = 2.

⇒ a² + b² = 23ab [Given].

To prove.

⇒ ㏒(a + b)/5 = 1/2(㏒a + ㏒b).

As we know that,

Formula of :

⇒ (a + b)² = a² + b² + 2ab.

Using this formula in the equation, we get.

⇒ (a + b)² = a² + b² + 2ab.

Put the value of (a² + b² = 23ab) in the equation, we get.

⇒ (a + b)² = 23ab + 2ab.

⇒ (a + b)² = 25ab.

Taking log on both sides of the equation, we get.

⇒ ㏒[(a + b)²] = ㏒(25ab).

As we know that,

Formula of :

⇒ ㏒ₐMN = ㏒ₐM + ㏒ₐN.

⇒ ㏒ₐN^(α) = α㏒ₐN (α any real number).

Using this formula in the equation, we get.

⇒ 2㏒(a + b) = ㏒(25) + ㏒(a) + ㏒(b).

⇒ 2㏒(a + b) = ㏒(5)² + ㏒(a) + ㏒(b).

⇒ 2㏒(a + b) = 2㏒(5) + ㏒(a) + ㏒(b).

⇒ 2㏒(a + b) - 2㏒(5) = ㏒(a) + ㏒(b).

As we know that,

Formula of :

⇒ ㏒ₐM/N = ㏒ₐM - ㏒ₐN.

Using this formula in the equation, we get.

⇒ 2[㏒(a + b) - ㏒(5)] = ㏒(a) + ㏒(b).

⇒ 2[㏒(a + b)/5] = ㏒(a) + ㏒(b).

⇒ ㏒(a + b)/5 = 1/2[㏒(a) + ㏒(b)].

Hence Proved.

Similar questions