Math, asked by kfathimarani, 5 days ago

If a2+b2 = 24and ab =10 find a(a+b)^2 +3(a-b)^2​

Answers

Answered by emonhossain7476
0

Answer:

The answer is 202

Step-by-step explanation:

here \: 2 \: formula \: needs \: to \: solved \:  \\ the \: problem

 \\ 1. \:  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab

  \\ 1. \:  {a}^{2}  +  {b}^{2}  =  {(a  -  b)}^{2}   +  2ab

I explained and solved the problem in picture.

Attachments:
Answered by varadad25
1

Answer:

The value of the given expression is either 202.08 or 114.08.

Step-by-step-explanation:

We have given that,

  • a² + b² = 24
  • ab = 10

We have to find the value of

a ( a + b )² + 3 ( a - b )²

Let this expression be P.

P = a ( a + b )² + 3 ( a - b )²

⇒ P = a ( a² + 2ab + b² ) + 3 ( a² - 2ab + b² )

⇒ P = a ( a² + b² + 2 * ab ) + 3 ( a² + b² - 2 * ab )

⇒ P = a ( 24 + 2 * 10 ) + 3 ( 24 - 2 * 10 )

⇒ P = a ( 24 + 20 ) + 3 ( 24 - 20 )

⇒ P = a * 44 + 3 * 4

P = 44a + 12

Now,

ab = 10

b = 10 / a

By using this value, we get,

a² + b² = 24

⇒ a² + ( 10 / a )² = 24

⇒ a² + ( 10² / a² ) = 24

⇒ a² + ( 100 / a² ) = 24

⇒ ( a² * a² + 100 ) / a² = 24

⇒ a⁴ + 100 = 24a²

a⁴ - 24a² + 100 = 0

By substituting a² = x, we get,

⇒ x² - 24x + 100 = 0

Comparing with ax² + bx + c = 0, we get,

  • a = 1
  • b = - 24
  • c = 100

By quadratic formula,

\displaystyle{\boxed{\pink{\sf\:x\:=\:\dfrac{-\:b\:\pm\:\sqrt{b^2\:-\:4ac}}{2a}\:}}}

\displaystyle{\implies{\sf\:x\:=\:\dfrac{-\:(\:-\:24\:)\:\pm\:\sqrt{(\:-\:24\:)^2\:-\:4\:\times\:1\:\times\:100}}{2\:\times\:1}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{24\:\pm\:\sqrt{576\:-\:400}}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{24\:\pm\:\sqrt{176}}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{24\:\pm\:13.266}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{24\:+\:13.266}{2}\:\quad\:OR\:\quad\:x\:=\:\dfrac{24\:-\:13.266}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{37.266}{2}\:\quad\:OR\:\quad\:x\:=\:\dfrac{10.734}{2}}

\displaystyle{\implies\sf\:x\:=\:18.633\:\quad\:OR\:\quad\:x\:=\:5.367}

\displaystyle{\therefore\:\boxed{\blue{\sf\:x\:\approx\:18.63\:}}\sf\quad\:OR\:\quad\:\boxed{\blue{\sf\:x\:\approx\:5.37\:}}}

Now,

\displaystyle{\sf\:a^2\:=\:x}

\displaystyle{\implies\sf\:a\:=\:\sqrt{x}}

\displaystyle{\implies\sf\:a\:=\:\sqrt{18.63}}

\displaystyle{\implies\sf\:a\:=\:4.316}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:a\:\approx\:4.32\:}}}}

Also,

\displaystyle{\sf\:a^2\:=\:x}

\displaystyle{\implies\sf\:a\:=\:\sqrt{x}}

\displaystyle{\implies\sf\:a\:=\:\sqrt{5.37}}

\displaystyle{\implies\sf\:a\:=\:2.317}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:a\:\approx\:2.32\:}}}}

Now, by using a = 4.32,

P = 44a + 12

⇒ P = 44 * 4.32 + 12

⇒ P = 190.08 + 12

P = 202.08

Now, by using a = 2.32,

P = 44a + 12

⇒ P = 44 * 4.32 + 12

⇒ P = 102.08 + 12

P = 114.08

The value of the given expression is either 202.08 or 114.08.

Similar questions