Math, asked by plrohit2008, 5 days ago

If a² + b² + 2a + 1 = 0, then find value of \frac{2a + b}{3}

Answers

Answered by XxitzZBrainlyStarxX
9

Question:-

If a² + b² + 2a + 1 = 0, then find value of  \sf\frac{2a + b}{3}.

Given:-

  • a² + b² + 2a + 1 = 0.

To Find:-

Value of  \sf\frac{2a + b}{3}.

Solution:-

a² + b² + 2a + 1 = 0.

ax² + bx + c = 0.

Comparing with,

  • a = 1.
  • b = 2.
  • c = b² + 1.

 \sf \large x =  \frac{ - b± \sqrt{b {}^{2} - 4ac } }{2a}  \\  \\  \sf \large a =  \frac{ - 2± \sqrt{4 - 4(b {}^{2} + 1) } }{2}  \\  \\  \sf \large a =  - 1± \sqrt{1 - b {}^{2} - 1 }  \\  \\  \sf \large a =  - 1±bi

Comparing with real and imaginary parts.

  • a = – 1.
  • b = 0.

 \sf \large \frac{2a + b}{ 3 } =  \frac{2 \times ( - 1) + 0}{3}  =   - \frac{ 2}{3}

Answer:-

 \sf \large \green{ \therefore The \:  value  \: of  \:of \: \frac{2a + b}{3} =   - \frac{2}{3} . }

Hope you have satisfied.

Similar questions