Math, asked by soumilaggarwal, 1 year ago

If a2 +b2 = 34 and ab=15 , find the values of a+b and a-b.

Answers

Answered by TanzeelUrRahman
16
a+b=8
a-b=2 thats the right answer

TanzeelUrRahman: (a+b) = a2 + b2 +2ab
TanzeelUrRahman: (a+b)2 = 34 + 2(15)
TanzeelUrRahman: (a+b)2 = 34 +30 = 64
TanzeelUrRahman: a + b = 8 after taking square root
TanzeelUrRahman: a = 8-b
TanzeelUrRahman: ab = 15
TanzeelUrRahman: (8-b)b = 15
TanzeelUrRahman: 8b- b2 = 15
TanzeelUrRahman: b2 -8b +15
TanzeelUrRahman: b2 -8b +15 = 0 then factorize it
Answered by harendrachoubay
27

The values of  "a + b = 8"  and "a - b = 2".

Step-by-step explanation:

We have,

a^{2} +b^{2} =34 and ab=15

To find, the values of  a + b and a - b = ?

(a+b)^{2} =a^{2}+b^{2}+2ab

(a+b)^{2} =34+2(15)=34+30=64

(a+b)^{2}=8^{2}

⇒ a + b = 8      .....(1)

Also,

(a-b)^{2} =(a+b)^{2} -4ab

From (1), we get

(a-b)^{2} =(8)^{2} -4(15)=64-60=4

(a-b)^{2}=2^{2}

⇒ a - b = 2

Hence, the values of  a + b = 8  and a - b = 2.

Similar questions