If a²+b²=41 and ab=4 then find a-b
Answers
Answered by
7
Given:
a²+b² = 41
ab = 4
Proof
We know that:
( a - b)²
==> (a-b)(a-b)
==>a(a-b) - b(a-b)
==> a² - ab - ab + b²
==> a² + b² - 2 ab........................(1)
Thus:
(a - b)² = a² + b² - 2ab
Solution
( a - b )² = 41 - 2*4
==> (a-b)² = 41 -8
==> (a-b)² = 33
a-b = √33
or a-b = -√33
There are two answers:
√33 or -√33
Hope it helps you
__________________________________________________________________
Answered by
3
a² + b² = 41
ab = 4
a - b = ?
We know that
( a - b )² = a² + b² - 2ab
=> ( a - b )² = 41 - 2( 4 )
=> ( a - b )² = 41 - 8
=> ( a - b )² = 33
=> By taking square root on both the sides
=> a - b = √33. or. a - b = - √33
Similar questions