Math, asked by monosijdas82pa9gm5, 1 year ago

if a2+b2=5ab then show a2/b2+b2/a2=23

Answers

Answered by manpreetkrgrovpa0h41
25
a2/b2+b2/a2=(a4+b4)/a2b2
=[(a2+b2)^2-2a2b2]/a2b2
=[(5ab)^2-2a2b2]/a2b2
=[25a^2b^2-2a2b2]/a2b2
=23a2b2/a2b2
=23
Answered by vinod04jangid
1

Answer:

23

Step-by-step explanation:

Given:

a^{2}+b^{2}=5 a b

To prove:

\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}=23

Solution:

A quadratic equation can be solved using one of two basic strategies. Those are

The method of standard equations

Factorization is a technique.

The roots of a quadratic equation can be discovered using the Standard equation approach.

\begin{aligned}&a^{2}+b^{2}=5 a b \\&\Rightarrow \frac{a^{2}}{a b}+\frac{b^{2}}{a b}=5 \\&\Rightarrow \frac{a}{b}+\frac{b}{a}=5\end{aligned}

Now squaring the equation on both sides,

\begin{aligned}&\Rightarrow\left(\frac{a}{b}\right)^{2}+\left(\frac{b}{a}\right)^{2}+2 \times \frac{a}{b} \times \frac{b}{a}=25 \\&\Rightarrow \frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}=25-2 \\&\Rightarrow \frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}=23\end{aligned}

Hence the correct answer is 23.

Solve the quadratic equation using appropriate method.

https://brainly.in/question/25021951

Verify the quadratic equation

https://brainly.in/question/49863420

#SPJ2

Similar questions