if a²+b²=9 and ab= 4 . find the value of 3(a+b)²-2(a-b)²
Answers
Answered by
0
a² + b² = 9
Add 2ab on both sides,
a² + b² + 2ab = 9 + 2( 4 )
( a + b )² = 9 + 8
( a + b )² = 17 ----: ( 1 )
a² + b² = 9
Add - 2ab on both sides,
a² + b² - 2ab = 9 - 2( 4 )
( a - b )² = 9 - 8
( a - b )² = 1 ------: ( 2 )
Now,
3( a + b )² - ( a - b )²
Putting value(s) from ( 1 ) and ( 2 )
=> 3( 17 )² - 1²
=> 3( 289 ) - 1
=> 867 - 1
=> 866
Add 2ab on both sides,
a² + b² + 2ab = 9 + 2( 4 )
( a + b )² = 9 + 8
( a + b )² = 17 ----: ( 1 )
a² + b² = 9
Add - 2ab on both sides,
a² + b² - 2ab = 9 - 2( 4 )
( a - b )² = 9 - 8
( a - b )² = 1 ------: ( 2 )
Now,
3( a + b )² - ( a - b )²
Putting value(s) from ( 1 ) and ( 2 )
=> 3( 17 )² - 1²
=> 3( 289 ) - 1
=> 867 - 1
=> 866
Answered by
5
Answer:
a ²+ b² =9
ab= 4
(a+b)²=a²+b²+2.a.b
=> 9+2×4
=>17
(a-b)² = a²+b²-2.a.b
=> 9-2×4
=> 1
3(a+b)² - 2(a-b)²
=>3×17 - 2×1
=>51 - 2
=> 49
Hope this is helpful to U ✨
Attachments:
Similar questions