Math, asked by dassupriya15882, 10 months ago

If a²+b²+c²=16 and ab+bc+ca=10, find the value of a+b+c.

Answers

Answered by Anonymous
5

\bold\red{\underline{\underline{Answer:}}}

\bold{The \ value \ of \ a+b+c \ is \ 6.}

\bold\blue{Explanation}

\bold{(a+b+c)^{2}=(a+b+c)(a+b+c)}

\bold{=>a^{2}+ab+ac+ab+b^{2}+bc+ac+bc+c^{2}}

\bold{=>a^{2}+b^{2}+c^{2}+2(ab+bc+ac)}

\bold\orange{Given:}

\bold{=>a^{2}+b^{2}+c^{2}=16}

\bold{=>ab+bc+ca=10}

\bold\pink{To \ find:}

\bold{The \ value \ of \ a+b+c}

\bold\green{\underline{\underline{Solution}}}

\bold{=>a^{2}+b^{2}+c^{2}=16...(1)}

___________________________________

\bold{=>ab+bc+ca=10}

\bold{Multiply \ both \ sides \ by \ 2}

\bold{,we \ get}

\bold{=>2(ab+bc+ca)=20...(2)}

___________________________________

\bold{From \ (1) \ and \ (2),}

\bold{According \ to \ identity,}

\bold{(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)}

\bold{(a+b+c)^{2}=16+20}

\bold{(a+b+c)^{2}=36}

\bold{On \ taking \ square \ root \ of \ both \ sides,}

\bold{we \ get}

\bold{=>a+b+c=6}

\bold\purple{\tt{\therefore{The \ value \ of \ a+b+c \ is \ 6.}}}

Similar questions