Math, asked by sonamthapa2008, 7 months ago

If a²+b²+c²=2(b+c-1) then find the value of a+b+c​

Answers

Answered by JENNY2007
0

Answer:

it can help u

follow me

Step-by-step explanation:

To solve this question, you must know the identity

(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)

(a+b+c)^2 ≥ 0 for any real values of a, b, c

Therefore,

a^2 + b^2 + c^2 + 2(ab + bc + ca) ≥ 0

Given that a^2 + b^2 + c^2 = 1

Therefore,

1 + 2(ab + bc + ca) ≥ 0

ab + bc + ca ≥ -1/2

(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0

2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0

2 [ 1 - (ab + bc + ca)] ≥ 0

Therefore, 1 ≥ (ab + bc + ca)

Hence the answer is [-1/2, 1]

Hav a good time :)

Similar questions