If a2 + b2 + c2 = 24 and ab + bc + ca = -4, then find
a+b+c
Answers
Answered by
4
Step-by-step explanation:
hope that helps!!!
!!!
Attachments:
Answered by
4
Answer:
a + b + c = 4
Note:
• (a+b)² = a² + b² + 2ab
• (a-b)² = a² + b² - 2ab
• (a+b)(a-b) = a² - b²
• (a+b)³ = a³ + b³ + 3ab(a+b)
• (a-b)³ = a³ - b³ - 3ab(a-b)
• a³ + b³ = (a+b)(a² + b² - ab)
• a³ - b³ = (a+b)(a² + b² + ab)
• (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
Solution:
Given:
a² + b² + c² = 24
ab + bc + ca = - 4
To find:
a + b + c = ?
Now,
We know that ;
=> (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
=> (a + b + c)² = 24 + 2×(- 4)
=> (a + b + c)² = 24 - 8
=> (a + b + c)² = 16
=> a + b + c = √16
=> a + b + c = 4
Hence,
The required value of (a + b + c) is 4 .
Similar questions