Math, asked by Anonymous, 9 months ago

if a²+b²+c²=30,a+b+c=10 then value of a +bc+ac​

Answers

Answered by Anonymous
5

Answer:

\small{\underline{\sf{\pink{Given:}}}}

  • a² + b² + c² = 30.
  • a + b + c = 10.

\small{\underline{\sf{\green{To\:Find:}}}}

  • ab + bc + ac = ?

\small{\underline{\sf{\blue{Formula\:Used:arrow}}}}

{\boxed{\rm{{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca }}}

\small{\underline{\sf{\red{Solution:}}}}

\implies{{(10)}^{2} = 30 + 2ab+ 2bc + 2ca}

\implies{100 = 30 + 2(ab + bc + ca)}

\implies{100 - 30 = 2(ab + bc + ca)}

 \implies{70 = 2(ab + bc + ac)}

 \implies{2(ab + bc + ac) = 70}

 \implies{ab + bc + ac = \frac{70}{2} }

 \implies{ab + bc + ac = 35}

➱The value of ab + bc + ac = 35.

Answered by tanishakhandelwal040
0

Answer:

answer is 35

Step-by-step explanation:

squaring (a+ b+ c=10)

a^2+b^2+c^2 +2ab+ 2bc+ 2ac=100

30+2(ab+bc+ac) = 100

so, ab+bc+ac=35

Similar questions