Math, asked by ItzSwagGirl99, 7 months ago

if a²+b²+c²=30,a+b+c=10 then value of a +bc+ac​

Answers

Answered by Anonymous
4

\small{\underline{\sf{\pink{Given:}}}}

a² + b² + c² = 30.

a + b + c = 10.

\small{\underline{\sf{\green{To\:Find:}}}}

ab + bc + ac = ?

\small{\underline{\sf{\blue{Formula\:Used:arrow}}}}

{\boxed{\rm{{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca }}}

\small{\underline{\sf{\red{Solution:}}}}

\implies{{(10)}^{2} = 30 + 2ab+ 2bc + 2ca}

\implies{100 = 30 + 2(ab + bc + ca)}

\implies{100 - 30 = 2(ab + bc + ca)}

 \implies{70 = 2(ab + bc + ac)}

 \implies{2(ab + bc + ac) = 70}

 \implies{ab + bc + ac = \frac{70}{2} }

 \implies{ab + bc + ac = 35}

➱The value of ab + bc + ac = 35.

\huge\underline\bold\pink{Thanks}

Answered by Anonymous
2

Correct Question :

›»› If a² + b² + c² = 30, a + b + c = 10 then find the value of ab + bc + ac

━━━━━━━━━━━━━━━━⠀

Answer :

›»› The value of ab + bc + ac = 35

Given :

  • a² + b² + c² = 30
  • a + b + c = 10

To Find :

  • The value of ab + bc + ac = ?

Required Solution :

As we know that

⇛ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

It is given that (a + b + c)² is 10 and a² + b² + c² is 30.

So ,

⇛ (10)² = 30 + 2ab + abc + 2ca

⇛ 10 × 10 = 30 + 2ab + abc + 2ca

⇛ 100 = 30 + 2ab + 2bc + 2ca

⇛ 100 = 3 + 2(ab + bc + ca)

⇛ 100 - 3 = 2(ab + bc + ca)

⇛ 70 = 2(ab + bc + ca)

⇛ 70/2 = ab + bc + ca

⇛ 35 = ab + bc + ca

⇛ ab + bc + ca = 35

Hence, the value of ab + bc + ca is 35.

Similar questions