Math, asked by rushghadge44791, 1 year ago

If a²+ b²+c²=44& a+b+c=8 find the value of a³+ b³+ c³-3abc

Answers

Answered by aryan02p3jd6e
0
a² + b² + c² = 44
⇒a + b + c = 8
⇒(a + b + c)² = 8² = 64
But (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 64 = 44 + 2(ab + bc + ca)
⇒ 64 - 44 = 2(ab+bc+ca)
⇒ 20 = 2 (ab + bc + ca)
⇒ 10 = (ab + bc + ca)
or (ab + bc + ca) = 10
⇒ -(ab + bc + ca) = -(10)
⇒ -ab -bc -ca = -10
Now a³ + b³ + c³ - 3abc = (a+b+c)(a² + b² + c² -ab -bc -ca)
⇒ a³ + b³ + c³ - 3abc = (8) (44 - 10)
⇒ a³ + b³ + c³ - 3abc = (8) (34)
⇒ a³ + b³ + c³ - 3abc = 272
I hope that helps. In case you still need help, let me know as a comment :)
Similar questions