Math, asked by anjali7425, 6 months ago

if A2+B2+c2=50and ab+BC+ca=47 find a+b+c

Answers

Answered by shinzonskireddy
1

Answer:

i think it is 25.

Step-by-step explanation:

Answered by Anonymous
12

\huge{\mathbb{\red{ANSWER:-}}}

Given :-

\sf{a^{2} + b^{2} + c^{2} = 50}

\sf{ab + bc + ca = 47}

To Find Out :-

\sf{(a + b + c) = ?}

Using Identity :-

\sf{(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)}

Solution :-

\sf{Putting \: the \: value \: of \: (a^{2}+b^{2}+c^{2}) \: and \: (ab+bc+ca)}

\sf{(a + b + c)^{2} = 50 + 2(47)}

\sf{(a + b + c)^{2} = 50 + 94}

\sf{(a + b + c)^{2} = 144}

\sf{(a + b + c) =\sqrt{144}}

\sf{(a + b + c) = 12}

Extra Identities :-

1)\sf{(a+b+c)^{3} = a^{3} + b^{3} + c^{3} + 3a^{2}(b+c) + 3b^{2}(a+c) + 3c^{2}(a+b) + 6abc}

2)\sf{(a^{3} + b^{3} + c^{3} - 3abc) = (a + b + c)[a^{2} + b^{2} + c^{2} - (ab + bc + ca)]}

Similar questions