Math, asked by gulshanchahal22, 9 months ago

if a²+ b² + c² =77 and a+b+c=15, then
find the value of ab+ +bc+ca​

Answers

Answered by Anonymous
34

\large{\bf{\underline{\blue{ANSWER}}}}

\large{\bf{\underline{\red{GIVEN}}}}

 a^2+b^2+c^2=77

 a+b+c=15

\large{\bf{\underline{\pink{TO\:FIND}}}}

 ab+bc+ca

\text\tt{USING IDENTITY (a+b+c)^2}

 (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

Now Put the given values.

 15^2=77+2(ab+bc+ca)

 225-77=2(ab+bc+ca)

 148=2(ab+bc+ca)

 ab+bc+ca=74

Some of The useful identities.

\bf\blue{(a+b)^2=a^2+b^2+2ab}

\bf\red{(a-b)^2=a^2-2ab+b^2}

Similar questions