if a²+b²+c²-ab-bc-ca = 0 then
Answers
Step-by-step explanation:
here, a² + b² + c² - ab-bc- ca = 0
we have to prove a = b = c
now, the solution
by, multiplying both sides with 2, we get the result.
2(a + b² + c²ab-bc-ca) = 0
2a² + 2b²+ 2c² - 2ab - 2bc - 2ca = 0 (a²- 2ab + b²) + (b² − 2bc + c²) + (c² - 2ca + a²) = 0
(a−b)² + (b-c)² + (c − a)² = 0
hence, we can say ,(a - b)² = (b - c)² = (c - a)² =
Answer:
a² + b² + c² = ab + bc + ca
On multiplying both sides by ‘2’, it becomes
2 ( a² + b² + c² ) = 2 ( ab + bc + ca)
2a² + 2b² + 2c² = 2ab + 2bc + 2ca
a² + a² + b² + b² + c² + c² – 2ab – 2bc – 2ca = 0
a² + b² – 2ab + b² + c² – 2bc + c² + a² – 2ca = 0
(a² + b² – 2ab) + (b² + c² – 2bc) + (c² + a² – 2ca) = 0
(a – b)² + (b – c)² + (c – a)² = 0
=> Since the sum of square is zero then each term should be zero
⇒ (a –b)² = 0, (b – c)² = 0, (c – a)² = 0
⇒ (a –b) = 0, (b – c) = 0, (c – a) = 0
⇒ a = b, b = c, c = a
∴ a = b = c.
Step-by-step explanation:
PLEASE MARK ME AS " BRAINLIST ".
THANK YOU..