Math, asked by Anonymous, 2 months ago

If a² + b² + c² - ab - bc - ca ≤ 0 then what is the value of (a +b)/c is .​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2}  - ab - bc - ca \leqslant 0

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{a + b}{c}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2}  - ab - bc - ca \leqslant 0

Multiply by 2, on both sides, we get

\rm :\longmapsto\: 2{a}^{2} +  2{b}^{2}  +  2{c}^{2}  - 2ab - 2bc - 2ca \leqslant 0

can be rewritten as

\rm :\longmapsto\:  {a}^{2}  + {a}^{2} +   {b}^{2}  + {b}^{2}  +   {c}^{2}  + {c}^{2}  - 2ab - 2bc - 2ca \leqslant 0

can be re-arranged as

\rm :\longmapsto\:( {a}^{2}  +  {b}^{2}  - 2ab) + ( {b}^{2} +  {c}^{2} - 2bc) + ( {c}^{2} +  {a}^{2} - 2ac) \leqslant 0

\rm :\longmapsto\: {(a - b)}^{2} +  {(b - c)}^{2} +  {(c - a)}^{2} \leqslant 0

We know, sum of squares can never be negative.

So

\rm :\longmapsto\: {(a - b)}^{2} +  {(b - c)}^{2} +  {(c - a)}^{2}  =  0

Now, we know that, sum of squares is zero only, when term itself is 0.

\rm :\implies\:a - b = 0 \:  \: and \:  \: b - c = 0 \:  \: and \:  \: c - a = 0

\rm :\implies\:a = b \:  \: and \:  \: b = c \:  \: and \:  \: c = a

\bf\implies \:a = b = c

So,

Let assume that

\red{\rm :\longmapsto\:a = b = c = x}

Now,

Consider,

\rm :\longmapsto\:\dfrac{a + b}{c}

\rm \:  =  \:  \: \dfrac{x + x}{x}

\rm \:  =  \:  \: \dfrac{2x}{x}

\rm \:  =  \:  \: 2

Hence,

\bf :\longmapsto\:\dfrac{a + b}{c}  = 2

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions