If a² + b² + c² - ab – bc - ca <= 0, (where a, b, c are non-zero real number) then value of
is : (a+b)/c
Answers
Answer:
2
Step-by-step explanation:
given:
a² + b² + c² - ab – bc - ca <= 0
multiply with 2 on both sides,
2a²+2b²+2c² -2ab-2bc-2ca ≤ 0
a²+b²-2ab+ b²+c²-2bc + c²+a²- 2ac ≤ 0
(a-b)² + (b-c)² + (c-a)² ≤0
all (a-b)², (b-c)², (c-a)² are ≥0 . so above equation cannot be negative. so given equation should be equal to 0.
and as there are no negative parts, each of (a-b)², (b-c)², (c-a)² should be equal to 0.
a-b =0, b-c =0, c-a = 0
so, a=b=c
now, (a+b)/c = 2a/a
= 2
I tried my level best to explain.
2
Explanation:
Given a² + b² + c² - ab – bc - ca <= 0
Multiply 2 on both sides
2a² + 2b² + 2c² - 2ab – 2bc - 2ca <= 0
(a² + b² - 2ab) + (b² + c² - 2bc) + (a² + c² - 2ca) <= 0
(a-b)² + (b-c)² + (c-a)² ≤0
Square of any real number can not be negative.
Therefore, (a-b)² + (b-c)² + (c-a)² = 0
a-b = 0, a = b
b-c = 0, b = c
c-a = 0, c = a
That implies, a=b=c
Value of (a+b)/c = (a+a)/a
= (2a)/a
Value of (a+b)/c = 2
#SPJ2
https://brainly.in/question/40626097
https://brainly.in/question/42408558