If a2 +b2+c2-ab-bc-ca=o , Prove that a=b=c
Answers
Answered by
9
Hey there !!!!!
________________________________________________
a²+b²+c²-ab-bc-ca=0
a²+b²+c²=ab+bc+ca---Equation 1
Multiplying equation 1 with 2 on both sides
2(a²+b²+c²)=2(ab+bc+ca)
2a²+2b²+2c²=2ab+2bc+2ca
a²+a²+b²+b²+c²+c²=2ab+2bc+2ca
Arranging like terms in form of X²-2XY+Y²=(X-Y)²
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0----Equation 2
Now square of any number is always positive.But according to equation 2 sum of squares is zero.This is possible only when each term is "0".
So,
(a-b)²=0 (b-c)²=0 (c-a)²=0
⇒⇒a=b ⇒⇒b=c ⇒⇒c=a
From above a=b=c
___________________________________________________
Hope this helped you.............
________________________________________________
a²+b²+c²-ab-bc-ca=0
a²+b²+c²=ab+bc+ca---Equation 1
Multiplying equation 1 with 2 on both sides
2(a²+b²+c²)=2(ab+bc+ca)
2a²+2b²+2c²=2ab+2bc+2ca
a²+a²+b²+b²+c²+c²=2ab+2bc+2ca
Arranging like terms in form of X²-2XY+Y²=(X-Y)²
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0----Equation 2
Now square of any number is always positive.But according to equation 2 sum of squares is zero.This is possible only when each term is "0".
So,
(a-b)²=0 (b-c)²=0 (c-a)²=0
⇒⇒a=b ⇒⇒b=c ⇒⇒c=a
From above a=b=c
___________________________________________________
Hope this helped you.............
Similar questions