. If a² + b² + c² = ab + bc + ca, then the value
of a³ + b³ + c³ is
Answers
Answered by
0
Answer:
3abc
Step-by-step explanation:
Using identity a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-(ab+bc+ca))
But ab+bc+ca = a²+b²+c²
=> a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-(a²+b²+c²))
=> a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-a²-b²-c²)
=> a³+b³+c³-3abc = (a+b+c) × 0
=> a³+b³+c³-3abc = 0
=> a³+b³+c³ = 3abc
Similar questions