if a2, b2,c2 are in a A.P .then prove that the following are also in A.P (i) 1/b+c ,1/c+a ,1/a+b (ii) a/b+c , b/a+c ,c/b+a
Answers
Answered by
5
- a)/(c + b) = (c - b)/(b + a)
Dividing both sides by (c + a),
(b - a)/{(c + b)(c + a)} = (c - b)/{(b + a)(c + a)}
{(b + c) - (c + a)}/{(b + c)(c + a) = {(c + a) - (a + b)}/{(a + b)(c + a)}
{1/(c + a)} - {1/(b + c)} = {1/(a + b)} - {1/(c + a)}
{2/(c + a)} = {1/(a + b)} - {1/(b + c)}
Therefore 1/(a + b), 1/(b + c), 1/(c + a) are in AP.
Dividing both sides by (c + a),
(b - a)/{(c + b)(c + a)} = (c - b)/{(b + a)(c + a)}
{(b + c) - (c + a)}/{(b + c)(c + a) = {(c + a) - (a + b)}/{(a + b)(c + a)}
{1/(c + a)} - {1/(b + c)} = {1/(a + b)} - {1/(c + a)}
{2/(c + a)} = {1/(a + b)} - {1/(b + c)}
Therefore 1/(a + b), 1/(b + c), 1/(c + a) are in AP.
Similar questions