If a2, b2 c2 are in A.P. then
(a) b2+ c, c2+ a2, a2 + b2 will also be in
A.P
(b) c2 +a2, b2 + c2, a2 + b2 will also be in
A.P.
(c) b2 - c2, c2 - a2, a2 - b2 will also be in
A.P
Answers
Answered by
1
Answer:
b
Step-by-step explanation:
Answered by
0
Answer:
2
,b
2
,c
2
are in A.P
⇒b
2
−a
2
=c
2
−b
2
⇒(b−a)(b+a)=(c−b)(c+b)
⇒
(c+b)
(b−a)
=
(b+a)
(c−b)
⇒
(c+b)(c+a)
(b−a)
=
(b+a)(c+a)
(c−b)
⇒
(c+b)(c+a)
(b+c−c−a)
=
(b+a)(c+a)
(c+a−a−b)
⇒
c+a
1
−
b+c
1
=
a+b
1
−
c+a
1
b+c
1
,
c+a
1
,
a+b
1
are in A.P
b+c
a+b+c
,
c+a
a+b+c
,
a+b
a+b+c
are in A.P
b+c
a
+1,
c+a
b
+1,
a+b
c
+1 are in A.P
b+c
a
,
c+a
b
,
a+b
c
are in A.P
Similar questions