If a2,b2,c2 are in AP then prove that cotA/2,cotB/2,cotC/2 are also in A.P
Answers
Answered by
0
Answer:
Let us consider that cotA,cotB,cotC are in AP and prove that a2,b2,c2 are in AP.
we know that cotA=\frac{b^{2}+c^{2}-a^{2}}{4(area of triangle)} and similarly cotB,cotC..
by considering that cotA,cotB,cotC are inAP,we get
2(c2+a2-b2)=(b2+c2-a2)+(b2+a2-c2),
by simplifying,we get
2b2=a2+c2,
\thereforea2,b2,c2 are in AP
Similar questions