Math, asked by manojmishra3412, 1 year ago

if(a²-b²)sinA + 2abcosA=a²+b²,then prove that tanA=a²-b²/2ab​

Answers

Answered by knjroopa
1

Step-by-step explanation:

Given If (a²-b²)sin A + 2ab cos A=a²+b²,then prove that tan A=a²-b²/2 ab

  • Given (a^2 – b^2)sin A + 2ab cos A = a^2 + b^2
  •   Now a^2 + b^2 – (a^2 – b^2)sin A = 2ab cos A
  • Squaring both sides we get
  • (a^2 + b^2)^2 + (a^2 – b^2)^2 sin^2 A – 2(a^2 + b^2)(a^2 – b^2)sin A = 4a^2b^2 cos^2 A
  • (a^2 + b^2) + (a^2 – b^2) sin^2 A – 2(a^2 + b^2)(a^2 – b^2) sinA – 4a^2b^2(1 – sin^2 A) = 0
  • [a^2 – b^2)^2 + 4a^2b^2] sin^2A – 2(a^2 + b^2)(a^2 – b^2)sinA + [(a^2 + b^2)^2 – 4a^2b^2] = 0
  • (a^2 + b^2)sin A – (a^2 – b^2)]^2 = 0
  • So (a^2 + b^2) sin A – (a^2 – b^2) = 0
  • Or sin A = a^2 – b^2 / a^2 + b^2
  • Or cosec A = a^2 + b^2 / a^2 – b^2
  • We know that cot^2 A = cosec^2 A – 1
  •      So cot^2 A = (a^2 + b^2 / a^2 – b^2)^2 – 1
  • So cot^2 A = (a^2 + b^2)^2 – (a^2 – b^2)^2 / (a^2 – b^2)^2
  •                 = (a^2 + b^2 – a^2 + b^2)(a^2 + b^2 + a^2 – b^2) / (a^2 – b^2)^2
  •                  = (2b)^2 (2a)^2 / (a^2 – b^2)^2
  •                  = 4a^2b^2 / (a^2 - b^2)^2
  • So cot A = √4 a^2b^2 / (a^2 – b^2)^2
  •                = 2ab / a^2 – b^2
  • Or tan A = a^2 – b^2 / 2ab (since cot A = 1/tan A)

Reference link will be

https://brainly.in/question/54471

# BAL

Similar questions