Math, asked by ishikadas170, 5 days ago

If a2 = b3 = c5 = d 6 , the value of logd (abc) is

Answers

Answered by agurupubalaji143
0

Answer:

a + b whole square is equal to a into b

Answered by amitnrw
1

if a² = b³ = c⁵ = d⁶   then \log_{d}(abc)  is \dfrac{31}{5}

Given:

  • a² = b³ = c⁵ = d⁶

To Find:

  • \log_{d}(abc)

Solution:

  • (xᵃ)ᵇ = xᵃᵇ
  • xᵃ.xᵇ=xᵃ⁺ᵇ
  • logₐa = 1
  • logaⁿ = n log a

Step 1:

Assume that

a² = b³ = c⁵ = d⁶  = k³⁰

Hence

a = k¹⁵

b = k¹⁰

c =k⁶

d = k⁵

Step 2:

Find abc

k¹⁵.k¹⁰.k⁶

= k³¹

=(k^5)^{\frac{31}{5} }

Step 3:

\log_{d}(abc) = \log_{k^5}( (k^5)^{\frac{31}{5} })

=\frac{31}{5}  \log_{k^5}( k^5 })

= 31/5

 

Hence if a² = b³ = c⁵ = d⁶   then \log_{d}(abc)  is \dfrac{31}{5}

Similar questions