Math, asked by yashsahil234, 1 year ago

if a3+b3=35 and a+b=5 then find the value of 1/a+1/b

Answers

Answered by TRISHNADEVI
17
✍✍HERE IS YOUR ANSWER..⬇⬇
====================================

\underline{SOLUTION}

\underline{Given \: : }\: \: a {}^{3} + b {}^{3} = 35 \: - - - - > (1)\\ \\ a + b = 5 \: - - - - > (2)\\ \\ \\ \underline{To \: \: find \: : }\: \: \frac{1}{a} + \frac{1}{b} =?

We \: \: know \: \: that , \\ \\ a {}^{3} + b {}^{3} = ( a+b )(a {}^{2} - ab+ b {}^{2} ) \\ \\ = > a {}^{3} + b {}^{3} = ( a + b)[(a + b) {}^{2} - 3 ab] \\ \\ = > 35 = 5[(5) {}^{2} - 3ab]\: \: \: \: [from \: \: (1) \: \: and \: \: (2)]\\ \\ = > 35 = 5(25 - 3ab) \\ \\ = > 35 = 125 - 15ab \\ \\ = > 125 - 15ab = 35 \\ \\ = > - 15ab = 35 - 125 \\ \\ = > - 15ab = - 90 \\ \\ = > ab = \frac{ - 90}{ - 15} \\ \\ = > ab = 6 \: - - - - > (3)

Now, \\ \\ \frac{1}{a} + \frac{1}{b} \\ \\ = \frac{b + a}{ab} \\ \\ = \frac{a + b}{ab} \\ \\ = \frac{5}{6} \: \: \: \: [from \: (1) \: \: and \: (3)]

\underline{ANSWER} \boxed{\bold{\frac{1}{a} + \frac{1}{b} = \frac{5}{6}}}

___________________________________
<marquee>
✝✝…HOPE…IT…HELPS…YOU…✝✝
Answered by taniya55555
10
Here is your answer buddy,

Given ,

 A^{3} + B^{3} = 35 ----------(1)

A+B = 5 ----------(2)

Now,

We know that,

 A^{3} + B^{3} = (A+B)^{3} - 3AB(A+B)

=> 35 =  5^{3} - 3AB(5)

=> 35 = 125 - 15AB (since, Cube of 5 = 125 )

=> 35 - 125 = -15AB

=> - 90 = -15AB

=> AB = 6

Now, as per question, we have to find the value of \frac{1}{A} + \frac{1}{B}

So,

\frac{1}{A} + \frac{1}{B}

=> \frac{A+B}{AB}

=> \frac{5}{6}

Hope this helps you.
Be Brainly.
Similar questions