Math, asked by pranalimahanta123, 6 hours ago

if a³+b³ = -54, a+b = 4, then ab=?​

Answers

Answered by diwanamrmznu
22

★GIVEN:-

 \implies \orange{a³+b³ = -54, a+b = 4} \\

★find:-

 \implies \red{ab=?}

solution

 \implies \orange{a³+b³ = -54} -  - (1) \\

 \implies \: a + b = 4  -  -  - (2)

do square both sides

 \implies \: (a + b) {}^{2}  = 4 {}^{2} \\  \\  \\  \implies \: a {}^{2}   + b {}^{2}  + 2ab = 16 \\  \\  \\  \implies  a {}^{2}  + b {}^{2} = 16 - 2ab -  -   - (3)

EQ (1) solve

 \implies \: a {}^{3} + b {}^{3}  =  - 54 \\  \\  \\  \implies \: (a + b)(a {}^{2}  + b {}^{2} - ab) =  - 54

  • put value EQ (2) and eq(3) value

 \implies \: ( 4)(16 - 2ab - ab) =  - 54 \\  \\  \\  \\  \implies \: 16 - 3ab =  \frac{ - 54}{4}   \\  \\ \\   \implies \:  - 3ab =   \frac{ - 27}{2}   - 16 \\  \\  \\  \implies \:  - 3ab =  \frac{ - 27 - 32}{2}  \\  \\  \\  \implies \:  - ab =  \frac{ - 59}{3 \times 2}  \\  \\  \\  \implies \: ab =  \frac{59}{6}  \\  \\  \\  \implies \: ab = 9.634

answer

 \implies \star \pink{ab = 9.634}

===================================

I hope it helps you

Similar questions