Math, asked by balramkumarmdb97, 9 months ago

If a3 + b3 = 604 and a + b = 4, then the value of a

4 + b4

is ​

Answers

Answered by MaheswariS
3

\textbf{Given:}

a^3+b^3=604\;\text{and}\;a+b=4

\textbf{To find:}

\text{The value of $a^4+b^4$}

\textbf{Solution:}

\text{Consider,}

a^3+b^3=604

\implies(a+b)(a^2-ab+b^2)=604

\implies(4)(a^2+b^2-ab)=604

\implies\,a^2+b^2-ab=151

\implies\,(a+b)^2-2ab-ab=151

\implies\,(4)^2-3ab=151

\implies\,-3ab=151-16

\implies\,-3ab=135

\implies\,ab=-45

\text{Now, we have a+b=4 and ab=-45}

\text{By trial and error method, a=9 and b=-5}

\bf\,a^4+b^4

=9^4+(-5)^4

=6561+625

=7186

\threfore\textbf{The value of $\bf\,a^4+b^4$ is 7186}

Find more:

If x^4-79x^2+1=0 then find the value of x^3+1/x^3

https://brainly.in/question/15839027

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

Answered by Swarup1998
6

To find. \mathsf{a^{4}+b^{4}}

Given. \mathsf{a^{3}+b^{3}=604,\:a+b=4}

Solution.

Here, \mathsf{a^{3}+b^{3}=604}

\Rightarrow \mathsf{(a+b)^{3}-3ab(a+b)=604}

\Rightarrow \mathsf{4^{3}-3ab(4)=604\quad[\because a+b=4]}

\Rightarrow \mathsf{64-12ab=604}

\Rightarrow \mathsf{12ab=64-604}

\Rightarrow \mathsf{12ab=-540}

\Rightarrow \underline{\mathsf{ab=-45}}

Now, \mathsf{a^{2}+b^{2}}

\mathsf{=(a+b)^{2}-2ab}

\mathsf{=4^{2}-2(-45)\quad[\because a+b=4,\:ab=-45]}

\mathsf{=16+90}

\mathsf{=106}

\Rightarrow \underline{\mathsf{a^{2}+b^{2}=106}}

\therefore \mathsf{a^{4}+b^{4}}

\mathsf{=(a^{2}+b^{2})^{2}-2a^{2}b^{2}}

\mathsf{=(a^{2}+b^{2})^{2}-2(ab)^{2}}

\mathsf{=106^{2}-2(-45)^{2}\quad[\because a^{2}+b^{2}=106,\:ab=-45]}

\mathsf{=11236-4050}

\mathsf{=7186}

\Rightarrow \underline{\mathsf{a^{4}+b^{4}=7186}}

Answer: \color{blue}\mathsf{a^{4}+b^{4}=7186}

Similar questions