Math, asked by nanigen, 10 months ago

if a3+b3:a3-b3=133:117,then a:b:=​

Answers

Answered by zyedshamsuddin
14

Answer:

 \frac{a}{b}  =  \frac{5}{2}

Step-by-step explanation:

 \frac{ {a}^{3} +  {b}^{3}  }{ {a}^{3} -  {b}^{3}  }  = \frac{133}{117}  \\ 117 {a}^{3}  +  117{b}^{3}  =  133{a}^{3}  -  133{b}^{3}  \\ 250 {b}^{3}  = 16 {a}^{3}  \\  \frac{ {a}^{3} }{ {b}^{3} }  =  \frac{250}{16}  \\  \frac{ {a}^{3} }{ {b}^{3} }  =  \frac{125}{8}  \\  \frac{a}{b}  =  \frac{5}{2}

Answered by muscardinus
5

a:b is 5:2

Step-by-step explanation:

Given that,

\dfrac{a^3+b^3}{a^3-b^3}=\dfrac{133}{117}

On cross multiplying, we get :

117a^3+117b^3=133a^3-133b^3

On rearranging a on LHS and b on RHS,

117a^3-133a^3=-133b^3-117b^3\\\\-16a^3=-250b^3\\\\16a^3=250b^3\\\\\dfrac{a^3}{b^3}=\dfrac{250}{16}\\\\\dfrac{a^3}{b^3}=\dfrac{125}{8}

Taking cube roots on both sides we get :

\dfrac{a}{b}=\dfrac{5}{2}

So, it is clear that a:b is 5:2. Hence, this is the required solution.

Learn more,

Ratio

https://brainly.in/question/10095764

Similar questions