Math, asked by BikramMondal, 1 year ago

if a³+b³+c³=3abc then find the value (a+b+c)

Answers

Answered by Divyashatiwari24
11
if a³+b³+c³=3abc
then a³+b³+c³-3abc=0
then using the identity a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)
so we can ( a+b+c)(a²+b²+c²-ab-bc-ac)=0
so we can say a+b+c = 0

hope it helps
plz mark as brainliest
Answered by ashishks1912
4

Given equation is a^3+b^3+c^3=3abc

To find :

The value of  a+b+c.

Solution :

From the given equation a^3+b^3+c^3=3abc we may write the given equation as below

Now subtracting  " 3ab " on both the sides of the given equation we get that

a^3+b^3+c^3-3abc=3ab-3ab

a^3+b^3+c^3-3abc=0

Here by using the algebraic identity :

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

Substitute the values of the formula a^3+b^3+c^3-3abc=0 in we get

(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0

(a+b+c)=0 or (a^2+b^2+c^2-ab-bc-ac)=0

Therefore we take only (a+b+c)=0

The value of a+b+c is 0 if a^3+b^3+c^3=3abc

Similar questions