If a³+b³+c³ = 3abc ,then find the value (a+b+c)
Answers
Answered by
2
we know the identity,
x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-yz-xz)
from that
if a³+b³+c³=3abc
then
3abc-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)
0=(a+b+c)(a²+b²+c²-ab-bc-ac)
⇒(a+b+c)=0 or (a²+b²+c²-ab-bc-ac)=0
x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-yz-xz)
from that
if a³+b³+c³=3abc
then
3abc-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)
0=(a+b+c)(a²+b²+c²-ab-bc-ac)
⇒(a+b+c)=0 or (a²+b²+c²-ab-bc-ac)=0
sharmilafareedp30hcc:
hope my answer helped you
Similar questions
History,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Economy,
1 year ago
Math,
1 year ago