If a⁴+ b⁴ = 14a²b² then show that log(a ²+b²) = loga + logb + 2log2,
(a, b>0)
Answers
Answered by
18
AnswEr:-
Here,
a⁴ + b⁴ = 14a²b²
or, (a²)² + (b²)² = 14a²b²
or, (a² + b²)² – 2a²b² = 14a²b²
or, (a² + b²)² = 16a²b²
Putting 'log' on both sides, we get,
or, log(a² + b²)² = log16a²b²
or, 2log(a² + b²) = log(4ab)²
or, 2log(a² + b²) = 2log(4ab)
or, log(a² + b²) = log4ab
or, log(a² + b²) = loga + logb + log4
or, log(a² + b²) = loga + logb + log2²
or, log(a² + b²) = loga + logb + 2log2
(Proved)
HOPE IT HELPS YOU✌✌✌✌✌
Answered by
0
If a⁴+b⁴=14a²b², then let us show that log(a²+b²)=log a+log b+2log 2
solving by- Rahbar Sabri
Attachments:
![](https://hi-static.z-dn.net/files/d67/1866fd4ccf0c77cb637d487ad4314fad.jpg)
Similar questions
English,
6 months ago
Math,
6 months ago
Physics,
6 months ago
Biology,
1 year ago
Social Sciences,
1 year ago