Math, asked by bhasan3615, 1 year ago

If a⁷ = 3, find the value of  \frac{(a^{-2})^{-3} \times (a^3)^4 \times (a^{-17})^{-1}}{a^7}

Answers

Answered by MaheswariS
0

Answer:

\bf\frac{(a^{-2})^{-3}\times\:(a^3)^4\times\:(a^{-17})^{-1}}{a^7}=81

Step-by-step explanation:

\frac{(a^{-2})^{-3}\times\:(a^3)^4\times\:(a^{-17})^{-1}}{a^7}

Using

\boxed{(a^m)^n=a^{mn}}

=\frac{a^6\times\:a^{12}\times\:a^{17}}{a^7}

Using

\boxed{a^ma^n=a^{m+n}}

=\frac{a^{6+12+17}}{a^7}

=\frac{a^{35}}{a^7}

Using

\boxed{\frac{a^m}{a^n}=a^{m-n}}

=a^{35-7}

=a^{28}

=(a^7)^4

=(3)^4

=81

\implies\:\boxed{\frac{(a^{-2})^{-3}\times\:(a^3)^4\times\:(a^{-17})^{-1}}{a^7}=81}

Similar questions