Math, asked by alokshukla908, 1 month ago

if AandB are matrices of the same order and AB =BA, then prove that (i) A²-B²=(A-B) (A+B) (ii) A²+2AB+B²=(A+B) ² (iii) A²-2AB+B²=(A-B) ²​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

If A and B are square matrices of same order and AB = BA

Prove that,

(i) A²-B²=(A-B) (A+B)

(ii) A²+2AB+B²=(A+B) ²

(iii) A²-2AB+B²=(A-B) ²

\large\underline{\sf{Solution-}}

Given that,

A and B are square matrices of same order such that AB = BA

Consider,

\rm :\longmapsto\:(A + B)(A - B)

\rm \:  =  \:  {A}^{2} - AB + BA -  {B}^{2}

\rm \:  =  \:  {A}^{2} - AB + AB -  {B}^{2}

\red{\bigg \{ \because \: AB = BA\bigg \}}

\rm \:  =  \:  {A}^{2}  -  {B}^{2}

Hence, Proved

Consider

\rm :\longmapsto\: {(A + B)}^{2}

\rm \:  =  \: (A + B)(A + B)

\rm \:  =  \:  {A}^{2} + AB + BA +  {B}^{2}

\rm \:  =  \:  {A}^{2} + AB + AB +  {B}^{2}

\red{\bigg \{ \because \: AB = BA\bigg \}}

\rm \:  =  \:  {A}^{2} + 2AB  +  {B}^{2}

Hence, Proved

Consider

\rm :\longmapsto\: {(A - B)}^{2}

\rm \:  =  \: (A - B)(A - B)

\rm \:  =  \:  {A}^{2} - AB -  BA +  {B}^{2}

\rm \:  =  \:  {A}^{2} - AB - AB +  {B}^{2}

\red{\bigg \{ \because \: AB = BA\bigg \}}

\rm \:  =  \:  {A}^{2} - 2AB +  {B}^{2}

Hence, Proved

Similar questions