Math, asked by supriya333333, 4 months ago

If ab=4 and a-b=8,then find a^2+b^2​

Answers

Answered by chinmaya44
2

Step-by-step explanation:

ab=4 a-b=8

a^2+b^2

=(a-b)^2+2ab

=(8)^2+2×4

=64+8

=72

Answered by REDPLANET
35

\underline{\boxed{\bold{Question}}}  

↠ If (a × b) = 4 and (a - b) = 8 , then find a² + b²

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Important\;Information}}}  

Algebraic identities are simple formulas that leads to easy calculation for problems related to algebraic operations.

\underline{\boxed{\bold{Important\;Identities}}}

\red{:\implies (a+b)^{2} = a^{2} +2ab+b^{2} }

\blue{:\implies (a-b)^{2} = a^{2} -2ab+b^{2} }

\red{:\implies a^{2} -b^{2} = (a-b)(a+b) }

\pink{:\implies (x+a)(x+b) = x^{2} +(a+b)x+ab }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Given}}}

↠  (a × b) = 4

↠ (a - b) = 8

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Answer}}}

Let's Start !

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Let's solve this question by using 2nd identity.

:\implies (a-b)^{2} = a^{2} -2ab+b^{2}

:\implies (8)^{2} = a^{2} -2(4)+b^{2}

:\implies 64 = a^{2} -8+b^{2}

:\implies a^{2}+b^{2} = 64 +8

\boxed{\bold{\blue{:\implies a^{2}+b^{2} = 72 }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\boxed{\bold{\therefore a^{2}+b^{2} = 72 }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u.../

【Brainly Advisor】

Similar questions