if ab+bc+ca=0
then the value of
{(b^2-ac)(c^2-ab)+(a^2-bc)(c^2-ab)+(a^2-bc)(b^2-ac)} /. (b^2-ac)(c^2-ab)(a^2-bc)
Answers
Answered by
0
Answer:
Answer:
1.) the value of a³ + b³ + c³ - 3abc = 18
2.) a²/bc + b²/ac + c²/ab = 3
Step-by-step explanation:
1.) a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab-ac-ba)
=6*(a² + b² + c²-(ab+bc+ca))
=6*(a² + b² + c²-11)
=6*(((a+b+c)² - 2ab - 2bc - 2ca) - 11) [we know the formula]
=6*((36-2(ab+bc+ca))-11)
=6*((36-22)-11)
=6*(14-11)
=6*3 = 18
2.) a+b+c=0
we know that
a³+b³+c³ = 3abc
a³/abc + b³/abc + c³/abc = 3
after simplifying
a²/bc + b²/ac + c²/ab = 3
Answered by
0
Step-by-step explanation:
ANSWER IN ATTACHMENT FILE
Attachments:
Similar questions