Math, asked by surveyjanna123, 4 months ago

if ab+bc+ca=0
then the value of
{(b^2-ac)(c^2-ab)+(a^2-bc)(c^2-ab)+(a^2-bc)(b^2-ac)} /. (b^2-ac)(c^2-ab)(a^2-bc)

Answers

Answered by Anonymous
0

Answer:

Answer:

1.) the value of a³ + b³ + c³ - 3abc = 18

2.) a²/bc + b²/ac + c²/ab = 3

Step-by-step explanation:

1.) a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab-ac-ba)

                       =6*(a² + b² + c²-(ab+bc+ca))

                       =6*(a² + b² + c²-11)

                       =6*(((a+b+c)² - 2ab - 2bc - 2ca) - 11)  [we know the formula]

                       =6*((36-2(ab+bc+ca))-11)

                       =6*((36-22)-11)

                       =6*(14-11)

                      =6*3 = 18

2.) a+b+c=0

    we know that

    a³+b³+c³ = 3abc

    a³/abc + b³/abc + c³/abc = 3

    after simplifying

    a²/bc + b²/ac + c²/ab = 3

Answered by ayanzubair
0

Step-by-step explanation:

ANSWER IN ATTACHMENT FILE

Attachments:
Similar questions