Math, asked by coolkshitij3413, 1 year ago

If ab+bc+ca=10 and a^2+b^2+c^2=44 then find a^3+b^3+c^3-3abc

Answers

Answered by AnushkaGrewal
8

(a+b+c)³=(a³+b³+c³)+3[(a+b+c)(ab+ac+bc)−abc]

(a+b+c)³ = (a³+b³+c³) + 3(10)(a+b+c) -3abc

(a³+b³+c³) - 3abc = (a+b+c)³ - 30(a+b+c)

(a³+b³+c³) - 3abc = (a+b+c) [ (a+b+c)^2 - 30 ]

(a³+b³+c³) - 3abc = (a+b+c) [ 44 +10 -30 ]

I can do it only till here. Sorry.


himantikagupta: Wrong answer
Answered by yashasvipatwal
5

Answer:

(a+b+c)³=(a³+b³+c³)+3[(a+b+c)(ab+ac+bc)−abc]

(a+b+c)³ = (a³+b³+c³) + 3(10)(a+b+c) -3abc

(a³+b³+c³) - 3abc = (a+b+c)³ - 30(a+b+c)

(a³+b³+c³) - 3abc = (a+b+c) [ (a+b+c)^2 - 30 ]

(a³+b³+c³) - 3abc = (a+b+c) [ 44 +10 -30 ]

I can do it only till here. Sorry

Step-by-step explanation:

plz follow me

Similar questions