If ab+bc+ca= 12 and a^2+b^2+c^2= 64 then find a+b+c
Answers
Answered by
0
Answer:
(a+b+c)^2 =a^2+b^2+c^2+2ab+2bc+2ca
(a+b+c)^2=(a^2+b^2+c^2)+2(ab+bc+ca)
(a+b+c)^2=64+2.12=64+24=88
a+b+c=√88=√4.22=2√22
Answered by
0
Answer:
2√22
Step-by-step explanation:
Given
ab + bc + ca = 12
a² + b² + c² = 64
We know that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
⇒(a + b + c)² = 64 + 2*(12)
= 64 + 24
= 88
⇒ a + b + c = √88 = √(4*22)
∴ a + b + c = 2√22
Similar questions