Math, asked by m8ous8ravasdigautri, 1 year ago

If ab+bc+ca =36 and a2+b2+c2=85 then find a+b+c

Answers

Answered by 1RADHIKAA1
116
(a+b+c)² = a²+b²+c²+2ab+2bc+2ac
(a+b+c)² = 85 + 2(ab+bc+ac)
(a+b+c)² = 85 + 2(36)
(a+b+c)² = 157
a+b+c = 12. 5299640861
Answered by pinquancaro
27

Answer:

The value of the expression is a+b+c=12.52

Step-by-step explanation:

Given : If ab+bc+ca =36 and a^2+b^2+c^2=85

To find : The value of a+b+c ?

Solution :

We know the identity,

(a+b+c)^2= a^2+b^2+c^2+2ab+2bc+2ac

(a+b+c)^2= a^2+b^2+c^2+2(ab+bc+ac)

Substitute the given values,

(a+b+c)^2= 85+2(36)

(a+b+c)^2= 85+72

(a+b+c)^2= 157

a+b+c= \sqrt{157}

a+b+c=12.52

Therefore, The value of the expression is a+b+c=12.52

Similar questions