Math, asked by irene2759, 1 month ago

If AB||CD , find the values of x,y and z.​

Attachments:

Answers

Answered by Yuseong
34

Step-by-step explanation:

 \Large \underline{\underline{\mathfrak{Solution \; (1) }}}

Value of z :

  \longrightarrow \sf{\quad { z + 100^\circ = 180^\circ}} \\

Reason : Sum of co-interior angles is 180°.

  \longrightarrow \sf{\quad { z  = 180^\circ- 100^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ z  = 80^\circ}}}} \\

Value of y :

  \longrightarrow \sf{\quad { 70^\circ + y + z = 180^\circ}} \\

Reason : Sum of all the angles that lie on the straight line is 180°.

Substitute the value of z.

  \longrightarrow \sf{\quad { 70^\circ + y + 80^\circ = 180^\circ}} \\

Performing addition.

  \longrightarrow \sf{\quad { y + 150^\circ = 180^\circ}} \\

Transposing 150 from LHS to RHS.

  \longrightarrow \sf{\quad { y  = 180^\circ- 150^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 30^\circ}}}} \\

Value of x :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ x = 70^\circ}}}} \\

Reason : Alternate interior angles are equal. Here, x and 70° are alternate interior angles.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

 \Large \underline{\underline{\mathfrak{Solution \; (2) }}}

Value of y :

  \longrightarrow \sf{\quad { 80^\circ + 40^\circ+ y = 180^\circ}} \\

Reason : Sum of the interior angles of triangle is 180°.

  \longrightarrow \sf{\quad { 120^\circ+ y = 180^\circ}} \\

Transposing 120° form LHS to RHS.

  \longrightarrow \sf{\quad { y = 180^\circ- 120^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 60^\circ}}}} \\

Value of x :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ x  = 80^\circ}}}} \\

○ Reason : Alternate interior angles are equal. Here, x and 80° are alternate interior angles.

Value of z :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 40^\circ}}}} \\

○ Reason : Alternate interior angles are equal. Here, y and 40° are alternate interior angles.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

Answered by ToxicPapi
3

 \Large \underline{\underline{\mathfrak{Solution \; (1) }}}

Value of z :

  \longrightarrow \sf{\quad { z + 100^\circ = 180^\circ}} \\

○ Reason : Sum of co-interior angles is 180°.

  \longrightarrow \sf{\quad { z  = 180^\circ- 100^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ z  = 80^\circ}}}} \\

Value of y :

  \longrightarrow \sf{\quad { 70^\circ + y + z = 180^\circ}} \\

○ Reason : Sum of all the angles that lie on the straight line is 180°.

Substitute the value of z.

  \longrightarrow \sf{\quad { 70^\circ + y + 80^\circ = 180^\circ}} \\

Performing addition.

  \longrightarrow \sf{\quad { y + 150^\circ = 180^\circ}} \\

Transposing 150 from LHS to RHS.

  \longrightarrow \sf{\quad { y  = 180^\circ- 150^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 30^\circ}}}} \\

Value of x :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ x = 70^\circ}}}} \\

○ Reason : Alternate interior angles are equal. Here, x and 70° are alternate interior angles.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

 \Large \underline{\underline{\mathfrak{Solution \; (2) }}}

Value of y :

  \longrightarrow \sf{\quad { 80^\circ + 40^\circ+ y = 180^\circ}} \\

○ Reason : Sum of the interior angles of triangle is 180°.

  \longrightarrow \sf{\quad { 120^\circ+ y = 180^\circ}} \\

Transposing 120° form LHS to RHS.

  \longrightarrow \sf{\quad { y = 180^\circ- 120^\circ}} \\

Performing subtraction.

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 60^\circ}}}} \\

Value of x :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ x  = 80^\circ}}}} \\

○ Reason : Alternate interior angles are equal. Here, x and 80° are alternate interior angles.

Value of z :

  \longrightarrow \quad \underline{\boxed {\pmb{\frak{ y  = 40^\circ}}}} \\

○ Reason : Alternate interior angles are equal. Here, y and 40° are alternate interior angles.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

#Nish

Similar questions