Math, asked by sulomarella, 6 months ago

if AB=I,BA=I then prove that A is invertable and B=A inverse​

Answers

Answered by MaheswariS
48

\underline{\textsf{Given:}}

\textsf{AB=I and BA=I}

\underline{\textsf{To prove:}}

\textsf{A is invertible and}

\mathsf{B=A^{-1}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{AB=I}

\textsf{Taking determinants}

\mathsf{|AB|=|I|}

\mathsf{|A|\;|B|=1}

\implies\sf{|A|{\neq}\,0}

\textsf{Hence A is invertible}

\textsf{Now}

\mathsf{AB=I}

\textsf{Multiply bothsides by}\;\mathsf{A^{-1}}

\mathsf{A^{-1}(AB)=A^{-1}I}

\mathsf{(A^{-1}A)B=A^{-1}I}

\mathsf{(I)B=A^{-1}}

\implies\boxed{\mathsf{B=A^{-1}}}

\textsf{Hence proved}

Similar questions