if ab - k=c²,bc - k=a² then prove that, ca - k= b²
Answers
Answered by
1
Step-by-step explanation:
Answer:
Step-by-step explanation:
If a + b + c = 0,
(a+b+c)² = a²+b²+c²+2ab+2ac+2bc
0² = a²+b²+c²+2ab+2ac+2bc
a²+b²+c²= -2ab-2ac-2bc
a²+b²+c²= -2(ab+ac+bc) ------1
If a + b + c = 0,
Then,
a = - b - c
b = - a - c
c = - b - a
a² - bc = a² - (- a - c )(- a - b)
= a² - (-a*-a + -c*-a + -c*-b + -a*-b)
= a² - (a² + ca + cb + ab)
= a² - a² - ca - cb - ab
= -1(ab + bc + ac)
Therefore a²-bc =-1(ab + bc + ac)------2
a²+ b² + c² = k(a² - bc)
k = (a²+ b² + c²)/(a² - bc)
Using ------2 and -----1, we get,
k = -2(a²+ b² + c²)/-1(a²+ b² + c²)
= -2/-1 = 2
Hope this helps.... :-)
says thanks with my Sol
Similar questions