Math, asked by SakshamJain11, 1 year ago

If abc=1,prove that:  \frac{1}{1+a+b^{-1}}  + \frac{1}{1+b+c^{-1}}  + \frac{1}{1+c+a^{-1}} = 1

Answers

Answered by newton82
2

 \frac{1}{1 + a + {b}^{ - 1} }  +  \frac{1}{1 + b +  {c}^{ - 1} }  +  \frac{1}{1 + c +  {a}^{ - 1} }
 \frac{1}{1 + a +  \frac{1}{b} }  +  \frac{1}{1 + b +  \frac{1}{c} }  +  \frac{1}{1 + c +  \frac{1}{a} }
 \frac{b}{b + ab + 1}  +  \frac{c}{c + bc + 1}  +  \frac{a}{a + ac + 1}
 \frac{b}{b + ab + 1}  +  \frac{c}{ \frac{1}{ab} + b \times  \frac{1}{ab} + 1 }  +  \frac{a}{a + a \times  \frac{1}{ab} +1}
 \frac{b}{b + ab + 1}  +  \frac{ \frac{1}{ab}  \times ab}{ \frac{1}{ab}  \times ab + b \times  \frac{1}{ab} \times ab + ab }  +  \frac{ab}{ab + 1 + b}
 \frac{b}{b + ab + 1}  +  \frac{1}{b + ab + 1}  +   \frac{ab}{b + ab + 1}
 \frac{b + ab + 1}{b + ab + 1}
 =  > 1 = 1 \\
hence verified
Similar questions