If abc=1 then show that 1/1+a+b^-1 + 1/1+b+c^-1 + 1/1+c+a^-1 =1
Answers
Answer:
Step-by-step explanation:
abc=1
⟹c=1/ab
1/(1+a+1/b)+1/(1+b+1/c)+1/(1+c+1/a)
=1/(1+a+1/b)+1/(1+b+ab)+1/(1+1/ab+1/a)
=b/(1+b+ab)+1/(1+b+ab)+ab/(1+b+ab)
=1+b+ab/(1+b+ab)
=1
Prove by adjusting the variable a, b and c
Step-by-step explanation:
L.H.S.=
1 1 1
--------------- + --------------- + ---------------
1+ a + 1/b 1+ b + 1/c 1+ c + 1/a
b×1 1 ab
= --------------- + --------------- + ----------------
b( 1+ a + 1/b) ( 1+ b + 1/c) ab (1+ c + 1/a)
(1/c= ab)
b 1 ab
= --------------- + -------------------- + -----------------
b+ ab +1 1+ b + ab ab+ abc +b
b 1 ab
= --------------- + ----------------- + -------------
b + 1 + ab b+ 1 + ab ab+ 1 +b
b + 1+ ab
= ------------------- = 1. proved
b+1 + ab