if abc= 1, then the value of is?
Answers
Answered by
2
given,
abc = 1
1/( 1 + a + 1/b) + 1/( 1 + b + 1/c) + 1/(1 +c + 1/a)
=?
abc = 1
let
a =K
b=1
c =1/K
then,
1/( 1 + a + 1/b) = 1/( 1 + K + 1) = 1/( K+2)
1/( 1 + b + 1/c ) = 1/( 1 + 1 + 1/1/K) = 1/(K+2)
1/(1 + c + 1/a) = 1/( 1 + 1/K + 1/K) =K/(K+2)
now add all of these ,
1/( 1 + a + 1/b) + 1/( 1 + b + 1/c) + 1/( 1 + c + 1/a) = 1/(K +2) + 1/(K+2) + K/(K +2)
= ( 1 + 1 + K)/(K + 2)
= ( K + 2)/(K + 2)
=1 ( answer)
abc = 1
1/( 1 + a + 1/b) + 1/( 1 + b + 1/c) + 1/(1 +c + 1/a)
=?
abc = 1
let
a =K
b=1
c =1/K
then,
1/( 1 + a + 1/b) = 1/( 1 + K + 1) = 1/( K+2)
1/( 1 + b + 1/c ) = 1/( 1 + 1 + 1/1/K) = 1/(K+2)
1/(1 + c + 1/a) = 1/( 1 + 1/K + 1/K) =K/(K+2)
now add all of these ,
1/( 1 + a + 1/b) + 1/( 1 + b + 1/c) + 1/( 1 + c + 1/a) = 1/(K +2) + 1/(K+2) + K/(K +2)
= ( 1 + 1 + K)/(K + 2)
= ( K + 2)/(K + 2)
=1 ( answer)
Similar questions